Detection and quantification of genetically modified organisms using very short, locked nucleic acid TaqMan probes.
نویسندگان
چکیده
Many countries have introduced mandatory labeling requirements on foods derived from genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (PCR) based upon the TaqMan probe chemistry has become the method mostly used to support these regulations; moreover, event-specific PCR is the preferred method in GMO detection because of its high specificity based on the flanking sequence of the exogenous integrant. The aim of this study was to evaluate the use of very short (eight-nucleotide long), locked nucleic acid (LNA) TaqMan probes in 5'-nuclease PCR assays for the detection and quantification of GMOs. Classic TaqMan and LNA TaqMan probes were compared for the analysis of the maize MON810 transgene. The performance of the two types of probes was tested on the maize endogenous reference gene hmga, the CaMV 35S promoter, and the hsp70/cryIA(b) construct as well as for the event-specific 5'-integration junction of MON810, using plasmids as standard reference molecules. The results of our study demonstrate that the LNA 5'-nuclease PCR assays represent a valid and reliable analytical system for the detection and quantification of transgenes. Application of very short LNA TaqMan probes to GMO quantification can simplify the design of 5'-nuclease assays.
منابع مشابه
Comparison of real-time PCR detection chemistries and cycling modes using Mon810 event-specific assays as model.
The most widely accepted methods for accurate quantitative detection of genetically modified organisms rely on real-time PCR. Various detection chemistries are available for real-time PCR. They include sequence-unspecific DNA labeling dyes such SYBR-Green I and the use of both universal (e.g., AmpliFluor) and sequence-specific double-labeled probes, the latter comprising hybridization (e.g., Mo...
متن کاملComparison of different real-time PCR chemistries and their suitability for detection and quantification of genetically modified organisms
BACKGROUND The real-time polymerase chain reaction is currently the method of choice for quantifying nucleic acids in different DNA based quantification applications. It is widely used also for detecting and quantifying genetically modified components in food and feed, predominantly employing TaqMan and SYBR Green real-time PCR chemistries. In our study four alternative chemistries: Lux, Plexor...
متن کاملPCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.
A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for q...
متن کاملElectrochemiluminescence polymerase chain reaction detection of genetically modified organisms
With the development of biotechnology, more and more genetically modified organisms (GMOs) have entered commercial market. Because of the safety concerns, detection and characterization of GMOs have attracted much attention recently. Electrochemiluminescence (ECL) method is a chemiluminescent (CL) reaction of species generated electrochemically on an electrode surface. It is a highly efficient ...
متن کاملSingle nucleotide polymorphism genotyping using short, fluorescently labeled locked nucleic acid (LNA) probes and fluorescence polarization detection.
Locked nucleic acids (LNAs) are synthetic nucleic acid analogs that bind to complementary target molecules (DNA, RNA or LNA) with very high affinity. At the same time, this binding affinity is decreased substantially when the hybrids thus formed contain even a single mismatched base pair. We have exploited these properties of LNA probes to develop a new method for single nucleotide polymorphism...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of agricultural and food chemistry
دوره 56 12 شماره
صفحات -
تاریخ انتشار 2008